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Introduction
The purpose of this document is to suggest a strategy for constructing standard diagnostics of the 
diurnal cycle from both climate model and observational data products. The guiding philosophy is “keep 
it simple,” in the hope that a diagnostic software package can be readily constructed and widely used. 
Of course this means that the output of the package will form only the beginning of necessary examina-
tion of the diurnal cycle in models and in the real world.

The latest version of the Coupled Model Intercomparison Project, CMIP5, provides several fields at 3-
hourly time resolution near the surface: air and surface temperatures, pressure, humidity, soil moisture, 
horizontal wind, energy flux components, overhead cloudiness, evaporation, precipitation, convective 
precipitation, and snowfall. (See the “3hr” tab in the Standard Output spreadsheet at http://cmip-pcm-
di.llnl.gov/cmip5/data_description.html.) Meanwhile satellite observations provide at least equally fine 
time resolution and global coverage for some of these fields. This data makes possible an extensive 
study of the diurnal cycle near the surface.

Covey et al. (2011, 2014) have published analyses of CMIP 3-hourly surface pressure fields and shown 
them to be consistent with the conventional picture of “atmospheric tides.” Like their oceanic relatives, 
atmospheric tides are periodic in time and spatially simple at large scales. Thus the surface-pressure 
tides provide an easy starting point for study of the diurnal cycle. At the opposite end of the complexity 
scale, precipitation is very irregular in space and time. This document will use precipitation as an exam-
ple of the challenges to construction of standard diagnostics of the diurnal cycle.

Analysis of the diurnal cycle of a time series xHtL typically begins by forming a “composite” or average 
diurnal cycle spanning 0 < t < 24 hours. Then further processing such as Fourier analysis is applied to 
the composite. Two questions arise: (1) What further processing is most appropriate for simple standard 
diagnostics that can produce a few key “metric” numbers when climate models are compared with each 
other or with observations? (2) Is it necessary to form a composite in the first place? Below we argue 
that (1) straighforward Fourier analysis is the most appropriate procedure and (2) forming a diurnal 
cycle composite is not necessary because Fourier analysis of xHtL over its entire domain gives the same 
once-a-day (24h), twice-a-day (12h) and higher harmonics of the diurnal cycle.

A note on definitions: In the study of tides the once-a-day Fourier harmonic is traditionally called 
“diurnal,” the twice-a-day harmonic “semidiurnal,” the thrice-a-day harmonic “terdiurnal,” and so on. 
Since the term “diurnal” also refers to the full cycle of a function over the span of one day, before decom-
position into Fourier harmonics, we avoid the traditional terms and simply refer to 24- 12-, 8-, ... hour 
harmonics. Note that our harmonics are fractions of a solar day, exactly 24 hours. Gravitationally driven 
tides occur at fractions of a siderial day, the period of Earth’s rotation (0.997 solar days) but the phenom-
ena discussed here (including atmospheric tides) are primarily driven by solar forcing.
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(1) Methods of Analysis
Dai et al. (2007) made a composite diurnal cycle of precipitation at each latitude / longitude grid point for 
December-January-February and June-July-August over several years. Then they least-squares fit 24- 
and 12-hour cycles to each grid point’s composite. The adjustable parameters in each fit are the ampli-
tude and phase of the cycle. Finally they mapped the amplitude (as a percentage of daily mean precip) 
and the phase (as time of maximum) for both the 24- and 12-hour fits at both seasons: 8 maps in all. At 
this point the results can be used to produce standard metrics. An important caveat is that for time-of-
maximum comparisons, one must use modular arithmetic: 24h = 0h for the once-a-day harmonic, 12h = 
0h for the twice-a-day harmonic, and so on.

This procedure is commonly used for diurnal cycle analysis, but there are others. Kikuchi and Wang 
(2008) simply mapped the climatological mean of the difference between daily-maximum and daily-
minimum precipitation as a measure of diurnal cycle amplitude. For DJF and JJA seasons and for the 
annual mean, this produces 3 maps. To examine the phase, they computed Empirical Orthogonal 
Eigenfunctions from a composite diurnal cycle. With data from the Tropical Rainfall Measurement 
MIssion (TRMM) satellite, they found that the first two EOFs represented the 24-hour harmonic and the 
next two represented the 12-hour harmonic. They plotted time series of the corresponding EOF ampli-
tudes (principal components) for DJF and JJA seasons. For each season and harmonic component, this 
procedure summarizes both amplitude and phase in only 2 line plots of precipitation rate spanning 
0 < t < 24 hours (as opposed to the initial composites in this procedure and Dai et al.’s, which amount to 
a line plot for each grid point). Here again the results can be used to produce standard metrics. Wang et 
al. (2011) propose diagnostic metrics based entirely on such EOFs. 

By construction, EOFs provide the most compact representation of the principal variations of space-time 
fields. They have been popular diagnostics since their introduction to meteorology and climatology by 
Lorenz (1956) and Kutzbach (1967). Compared with Fourier analysis, however, EOFs are not as simple 
conceptually and not as accessible computationally. Although the basic principle is simple -- find the 
eigenvectors and eigenvalues of a correlation matrix -- in practice EOFs come in a variety of versions, 
each with its own set of advantages and disadvantages (see e.g. Trenberth et al. 2005). Thus they 
seem inconsistent with a “keep it simple” philosophy for standard diagnostics.

(2) Are Composites Necessary?
To analyze 3-hourly surface pressure output from climate models, Covey et al. (2011, 2014) did not 
form a diurnal cycle composite. They simply applied a Fast Fourier Transform at each grid point to a 32-
day detrended time series of anomalies, i.e. values obtained during each day by subtracting that day’s 
mean value. The Fourier analysis produces harmonic components with periods of 32 days, 16 days and 
so on, but only the 24h and 12h harmonics were studied. Procedural details probably make little differ-
ence to studying pheonomena as regular as the tides. Indeed, Covey et al. showed that their model 
analysis agrees well with observational analysis of the tides by Dai and Wang (1999) using the compos-
ite technique. But one might worry that the details make a great deal of difference for the diurnal cycle 
of precipitation.
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At first sight a straight-out Fourier analysis seems rather different from the procedure of Dai et al. 
described above. The differences, however, are more apparent than real. Although Dai et al. used a 
least-squares fit of the 24- and 12-hour cycles to their composite, it is well known that when a periodic 
function is approximated by a trigonometric series via least squares, the resulting coefficients are 
identical to those obtained by Fourier analysis (e.g. Elmore and Heald 1969, Problem 1.7.2). So the 
question “Are the two procedures equivalent?” becomes “Does it matter whether or not a composite is 
formed before doing the Fourier analysis?” In fact it does not matter, because time-averaging (which 
forms the composite) and Fourier-transforming are basically linear integral operations that commute. 
This is shown below, first assuming for simplicity that time is a continuous variable, then for the more 
pertinent case in which time is measured in discrete steps. 

Continuous Time

Taking the units of local solar time t in days, and considering the time period 0 < t < N days, the Fourier 
series for a function over this domain is  

xHtL =⁄m=-¶
¶ am ‰2 p Âm t êN ; am = a–m

*  for real x. (1)

Note that Eq. (1) always forces xHNL = xH0L so that outside the domain 0 < t < N, xHtL repeats with time 
period N. Thus a trend in x over its nominal domain implies a repeating saw-tooth pattern that can be 
problematic in Fourier analysis. For this reason it is customary to first de-trend the data.

From the orthogonality of trigonometric functions it follows that

am = N-1
Ÿ0
NxHtL ‰-2 p Âm t êN „ t. (2)

As with any continuous-time Fourier series, a0 gives the (constant) average of x over the domain, the 
a±1 give amplitude and phase for the longest allowed period (N days), the a±2 give amplitude and phase 
for half this period (N ê2 days), the a±3 give amplitude and phase for a third this period (N ê3 days), and 
so on ad infinitum. But for the diurnal cycle, the only relevant coefficients are a±N for the 24-hour har-
monic, a±2N for the 12-hour harmonic, a±3N for the 8-hour harmonic, and so on. For comparison with 
the composite diurnal cycle, it is convenient to write these coefficients as

anN = N-1
Ÿ0
NxHtL ‰-2 p Â n t „ t = N-1⁄k=1

N
Ÿk-1
k xHtL ‰-2 p Â n t „ t. (3)

The composite itself is formed by averaging over the time of each day:

xHtL = N-1⁄k=1
N xHt + k - 1L ; 0 < t < 1, (4)

e.g. the composite 0800h LST value is xJ 1
3
N = BxJ 1

3
N + xJ1 + 1

3
N + xJ2 + 1

3
N + ... + xJN - 2

3
NFíN in our units. 

A Fourier series for xHtL is just a special case of Eqs. (1)-(2) with N = 1:

xHtL =⁄m=-¶
¶ am ‰2 p Âm t  ; am = a–m

*  for real x ; (5)

am = Ÿ0
1xHtL ‰-2 p Âm t „ t = N-1

Ÿ0
1
⁄k=1
N xHt + k - 1L ‰-2 p Âm t „ t. (6)

In this case all of the coefficients that emerge from the procedure are relevant to the diurnal cycle. The 
a±1 give amplitude and phase of the 24-hour harmonic, the a±2 give amplitude and phase of the 12-hour 
harmonic, the a±3 give amplitude and phase of the 8-hour harmonic, and so on ad infinitum. 

The relationship between the coefficients in Eqs. (3) and (6) is revealed by interchanging the order of 
summation and integration in (6) and then substituting t ê ª t + k - 1 in the integral. Since the limits t = 0 
and t = 1 become t ê = k - 1 and t ê = k, we have
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N

Ÿk-1
k xHt êL ‰-2 p Âm Ht ê-k+1L „ t ê. (7)

After substituting m Ø n, dropping the prime on the dummy integration variable t ê, and recognizing that 
‰-2 p Â n Ht-k+1L = ‰-2 p Â n t, comparison with Eq. (3) shows that an =anN (QED).

A related issue involves Fourier harmonics of spatial averages versus spatial averages of Fourier 
harmonics. The order of operations should not matter because Ÿ t‰

Â w t AŸarea f Ix, tM „2xE „ t = 

ŸareaAŸ t‰
Â w t f Ix, tM „ tE „2x as long as the area of integration does not depend on time. In the examples 

below, we choose to do the Fourier analysis first in order to display maps of amplitude and phase, but 
the evident (and expected) difference between land and ocean shows that averaging separately over 
these two areas would be informative.

Discrete Time

Continuing to measure time in days, suppose each day is divided into S time-segments (e.g. S = 8 for 3-
hourly data) and the continuous function xHtL is replaced by the sequence x0, x1, x2, ..., xSN at the 
segment boundaries over 0 < t < N. Since x repeats with time period N (q.v.) xSN = x0, so there are 
exactly SµN independent time points x0, x1, x2, ..., xSN -1. The correspondence between xHtL and the x j 
is given by xHtL = xH j êSL ª x j. Therefore integrals in the equations above are replaced by sums according 
to

Ÿa
bf HtL „ t Ø S-1⁄j=S a

S b f H j êSL. (8)

Also, because the interval between time points Dt (=S-1days) is finite, a Nyquist limit applies to the 
highest frequency that can be resolved by Fourier analysis. The equation analogous to (1) is thus

x j =⁄m=-SN ê 2
+SN ê 2 am ‰2 p Âm j êSN ; j = 0, 1, 2, ..., S N - 1. (1 ê)

At the Nyquist frequency limits m = ±S N ê2 the period is twice the interval between time points (2Dt = 6 
hours for 3-hourly data). “2Dt waves” are the highest frequency that discrete Fourier analysis can 
resolve.

Eq. (1 ê) represents exactly S N equations in the S N unknowns a0, a±1, a±2, ..., a ˝SN ê 2 ˝. (The coeffi-
cients a-SN ê 2 and a+SN ê 2 represent a single Fourier term because m = ±S N ê2 gives the same exponen-

tial factor ‰±Â p j = H-1L j.) These equations can be solved to give

am = HS NL-1⁄j=0
SN -1x j ‰-2 p Âm j êSN (2 ê)

by using the identity ⁄ j=0
M-1‰2 p Â n j êM = M dnM, the discrete version of orthogonality for trigonometric 

functions (or one may simply apply the transformation (8) to Eq. (2)).

Continuing with this procedure, the analysis of Eqs. (1)-(7) can be repeated to reach the same conclu-
sion. Instead of interchanging the order of summation and integration in going from Eq. (6) to Eq. (7), 
one interchanges the order of summation in a double sum. In both cases the operations commute, and 
the 24-hour and higher harmonics are identical whether or not one first forms a composite diurnal cycle. 

Caveats

One consideration in deciding between Fourier analysis of a composite diurnal cycle and straight-out 
Fourier analysis of the original time series is that composites may be useful by themselves. They can be 
inspected at a few sample grid points before succeeding steps are taken (e.g. Figure 4 in Dai et al. 
2007). None of the above procedures, however, address the “frequency versus intensity” issue of the 
diurnal cycle of precipitation. For example, the upper left panel of Figure 4 in Dai et al. shows a compos-
ite diurnal cycle for the Southeastern USA. This time series has a smooth once-a-day maximum at a 
well defined time. But the series is an average over many different days. Does the steady increase and 
then decrease of precipitation rate exhibited by the composite arise from corresponding steady 
increases and decreases during most days? Or does it arise from different days’ precipitation coming at 
different times (or not at all) but always at the same rate? Dai et al. argue that the latter explanation is 
closer to the truth. To make their case, they must reprocess the high-time-frequency raw data in ways 
that avoid a composite diurnal cycle.

4     standard_diurnal_diagnostics.nb



One consideration in deciding between Fourier analysis of a composite diurnal cycle and straight-out 
Fourier analysis of the original time series is that composites may be useful by themselves. They can be 
inspected at a few sample grid points before succeeding steps are taken (e.g. Figure 4 in Dai et al. 
2007). None of the above procedures, however, address the “frequency versus intensity” issue of the 
diurnal cycle of precipitation. For example, the upper left panel of Figure 4 in Dai et al. shows a compos-
ite diurnal cycle for the Southeastern USA. This time series has a smooth once-a-day maximum at a 
well defined time. But the series is an average over many different days. Does the steady increase and 
then decrease of precipitation rate exhibited by the composite arise from corresponding steady 
increases and decreases during most days? Or does it arise from different days’ precipitation coming at 
different times (or not at all) but always at the same rate? Dai et al. argue that the latter explanation is 
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Also, sampling a time series by a moving average inevitably reduces the amplitudes of its Fourier 
harmonics. This issue is pertinent to the CMIP5 database, in which precipitation and other flux variables 
are recorded as time averages over successive 3-hour intervals, whereas TRMM observations are 
snapshots. Dai et al. (1999) point out that time-averaging multiplies a Fourier amplitude at frequency w 
by the factor 2 sinHwDt ê2L êwDt (which is always < 1 because sin HxL êx < 1 for all x). In the case of 3-hour 
averaging intervals wDt = p ê4, p ê2 and 3 p ê4 -- and the necessary corrections are about 3%, 10% and 
30% -- for the 24-, 12- and 8-hour harmonics respectively. Thus the correction is severe only for the 8-
hour harmonic, which is so close to the Nyquist frequency (q.v.) that it should not be taken seriously 
anyway in 3-hourly data.

Finally, the equivalence between composite and straight-out analysis demonstrated above for the 
discrete case depends on the time points being evenly spaced. If they are not, then straight-out analysis 
would naturally give a time point with few or no neighbors on a particular day more weight than a time 
point on another day with many nearby neighbors. This distinction would be lost on formation of a 
composite diurnal cycle. For CMIP and Obs4MIPs data, however, the time points are equally spaced, 
so this caveat does not apply.

(3) Practical Implementation
The equations above are perfectly valid but do not represent the best algorithm for Fourier analysis. The 
Fast Fourier Transform speeds up the procedure by several orders of magnitude (Press et al. 2007). 
Standard software packages employ FFTs ubiquitously. For example, Covey et al. wrote scripts in a 
Python-based climate data analysis language (Williams et al. 2013) that in turn invokes the Numerical 
Python module fft for discrete Fourier transforms (http://www.numpy.org). This module is consistent 
with Eqs. (1 ê) and (2 ê) above, or equivalently Eqs. (12.1.7) and (12.1.9) in Press et al. 2007. Using this 
software, we produced the two figures shown below from (1) observational data and (2) CMIP5 climate 
model output, respectively. We obtained observations from the Obs4MIPs project that provides satellite 
data matched to CMIP output (Teixeira et al. 2014). For 3-hourly precipitation, Obs4MIPs uses TRMM 
3B42-3, a standard high-resolution combination of TRMM satellite data with other observations includ-
ing in situ measurements. For a sample of climate simulation output, we chose GFDL-HIRAM-360 
because it has the highest resolution of CMIP5 models providing 3-hourly output, thus potentially the 
best agreement with observations. TRMM 3B42-3 data covers the globe between about 50°S and 50°N 
latitudes (rather impressive for a “tropical” dataset!) and we restricted our model output to the same 
range.

Each figure shows (in the upper panel) precipitation observed during the single month of July 2001 and 
(in the lower four panels) the corresponding observed amplitudes and phases of the 24- and 12-hour 
Fourier harmonics. The amplitudes are expressed as a fraction of the monthly mean, so for example an 
amplitude of 0.3 means that a harmonic component has maximum-to-minimum difference of 60% of the 
monthly mean. We omitted areas with less than 1.5 mm / day monthly mean precipitation 
(approximately half the global average) from the amplitude and phase maps, since they seem to give 
little coherent information about the diurnal cycle; these masked-out areas appear in gray. White colors 
indicate off-scale high amplitudes.
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Perhaps because our figures represent only one month of one year, they are more noisy in appearance 
than those of other analyses that average over much longer periods of time. For example Dai et al. 
(2007) and Kikuchi and Wang (2008) average over June-July-August for 8 and 9 years, respectively. 
Nevertheless our sample results for the TRMM observations are consistent with many features of earlier 
analyses (e.g. Dai et al., Figs. 5d, 5j, 7c, 7h) including: (1) amplitudes generally larger over land than 
over ocean; (2) morning maxima over oceans; and (3) late afternoon maxima in the summer monsoon 
regions of Africa and South/Southeast Asia; and (3) predominance of the 24-hour harmonic, although 
the 12-hour harmonic is substantial and (generally speaking) tends to reinforce and narrow the precipita-
tion-maximum peak (see Appendix). Also appearing in the TRMM observations of 24-hour component 
phase, in the center of North America, is a variation of the times of maxima from west to east. The 
phase variation implies that precipitation begins in the late afternoon over the Rocky Mountains and 
then moves eastward over the Great Plains from night to morning. This result agrees with reanalysis of 
high-resolution weather data implying “that the eastward propagation of convection systems from the 
Rockies to the Great Plains plays an essential role for the warm season climate over the central U.S.” 
(Jiang et al. 2006).

Also in the TRMM observations of 24-hour component phase, in the Southern midlatitudes, a periodic 
phase variation appears as stripes running northwest-to-southeast in the Atlantic / Indian Oceans and 
southwest-to-northeast in the Pacific Ocean. The stripes also appear in the month of January 2002, 
oriented southwest-to-northeast in both the Atlantic and Pacific Ocean midlatitudes (not shown here). 
Since none of the stripes are oriented precisely north-south, it seems they are not artifacts of the time 
being recorded at discrete 3-hourly intervals. The stripes may represent the traces of a few individual 
winter storms over ocean. If so, they should “average out” as we consider longer periods of time -- while 
simultaneously the central North American phase propagation discussed above becomes more promi-
nent. Although the months of July 2001 and January 2002 are ENSO-neutral in terms of both traditional 
(Nino3.4) and multi-variable (http://www.esrl.noaa.gov/psd/enso/mei/table.html) indices, and thus may 
be considered “typical” to a first approximation, detailed analysis of both model simulations and observa-
tions requires much more data.

Nevertheless we may comment briefly on the differences shown below between the model output and 
observations. The model’s monthly mean precipitation looks very similar to the observed field. The 
model’s Fourier harmonic amplitudes generally agree with observations over land but are too small over 
tropical oceans, perhaps because sea surface temperature in AMIP-type simulations is prescribed with 
no diurnal cycle (Gates et al. 1998). An analogous underestimate of surface pressure variations has 
been noted in model simulations (Covey et al. 2011, 2014). On the other hand, diurnal SST variations 
are small, so the model may be underestimating the effect upon precipitation of insolation variations 
between day and night over open-ocean areas (away from land / sea breezes).

The phase maps suggest that the model often produces rainfall too early in the day. Although this 
discrepancy is a commonly noted problem with weather and climate simulations (e.g. Dai and Trenberth 
2004) some of it may be due to observational errors. Kikuchi and Wang (2008) note that the TRMM 
3B42-3 dataset includes infrared observations from geosynchronous satellites, and “IR-based precipita-
tion estimates tend to delay by about 3-4 h compared with those measured by ground-based radar or in 
situ rain gauge data . . . probably because of the contamination of nonprecipitating cirrus anvil clouds 
which develop after the development of deep convective clouds.” On the other hand a different version 
of the TRMM data, 3G68, “is based only on the TRMM instruments [a microwave imager and precipita-
tion radar], which are believed to provide the most reliable precipitation estimate for the tropics from 
space.” Kikuchi and Wang find that TRMM 3G68 precipitation leads 3B42 by about 3 hours and say 
“We will therefore adjust the PC [principal component] time series by three hours (according to the PCs 
in 3G68) when we interpret results of the 3B42 in the discussion throughout the rest of this paper.” 
Making this adjustment would bring the model results shown below into better agreement with 
observations.
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discrepancy is a commonly noted problem with weather and climate simulations (e.g. Dai and Trenberth 
2004) some of it may be due to observational errors. Kikuchi and Wang (2008) note that the TRMM 
3B42-3 dataset includes infrared observations from geosynchronous satellites, and “IR-based precipita-
tion estimates tend to delay by about 3-4 h compared with those measured by ground-based radar or in 
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of the TRMM data, 3G68, “is based only on the TRMM instruments [a microwave imager and precipita-
tion radar], which are believed to provide the most reliable precipitation estimate for the tropics from 
space.” Kikuchi and Wang find that TRMM 3G68 precipitation leads 3B42 by about 3 hours and say 
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Making this adjustment would bring the model results shown below into better agreement with 
observations.

Until we gather more data, we will forego quantification of the differences between various model-
produced and observational datasets, such as root-mean-square differences and related statistics 
(Taylor 2001). Here we only make one comment about the overall amplitudes shown in the figures 
below. Parseval’s Theorem equates the mean-squared value of a time series with a corresponding 
integral over frequency of its squared Fourier amplitude. Therefore we consider the square of the ratio 
of global mean 24- and 12-hour harmonics in the figures. For the observations this squared ratio is 1.8; 
for the model it is 2.4. Thus both observations and model have the once-a-day harmonic dominating the 
twice-a-day harmonic, as asserted above, but the extent of domination seems greater in the model.
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Appendix
In the tropical oceans, the 12-hour component of precipitation maximizes around 6 AM / PM and has 
roughly half the amplitude of the 24-hour component. The latter also maxizes in early morning, so 
combining the two harmonics gives a curve like this:
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Over tropical land, 12-hour component of precipitation again maximizes around 6 AM / PM, but the 24-
hour component now maximizes in late afternoon. The combination of the two again reinforces the 24-
hour peak:
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For some readers, the reinforcement of different harmonics at one time-point and their cancellation 
elsewhere may be familiar from the representation of the Dirac delta-function dHtL" Ÿ-¶

¶ ‰Â w t „w (e.g. 
Elmore and Heald 1969, Problem 12.2.3).
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